If it's not what You are looking for type in the equation solver your own equation and let us solve it.
150=-16x^2+128x
We move all terms to the left:
150-(-16x^2+128x)=0
We get rid of parentheses
16x^2-128x+150=0
a = 16; b = -128; c = +150;
Δ = b2-4ac
Δ = -1282-4·16·150
Δ = 6784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6784}=\sqrt{64*106}=\sqrt{64}*\sqrt{106}=8\sqrt{106}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-128)-8\sqrt{106}}{2*16}=\frac{128-8\sqrt{106}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-128)+8\sqrt{106}}{2*16}=\frac{128+8\sqrt{106}}{32} $
| 4(5x+5)=44+4 | | 7(2-5x)=119 | | X-(x.05)=500000 | | 15+8x=7x-8= | | 2(4-9)-(3-11)=-52x | | 3.5+1.5x^2=0 | | -61=8-(12w+42) | | y+17/15=-9 | | -14-18r-13=-18r+6 | | -61=8-(12w+42)–w | | 4z-2z=14 | | 9c-16=12c+10-16c | | 20r-8=-17+19r | | -41=-(45n+60)+n | | 9=4x-19 | | -11b-8=-11b+16 | | 5x+2(3-1)=-46 | | 8-5d+19=-3d-1 | | x-(x.03)=500000 | | (3/4x)+4=22 | | 3u-8=5u+2 | | 4+10w=9w+7 | | y-98/23=22 | | 5s-8=7s-2 | | -8(2n+5)=8 | | x+(x+3)+(2x-3)=36 | | -8p+6p=4(8p+1)+4(4-8p) | | x+(3+3)+(2x-3)=36 | | y+4/5=1/2/5 | | 6x+37=31 | | 9(c-825)=729 | | 6+10z=-4+9z |